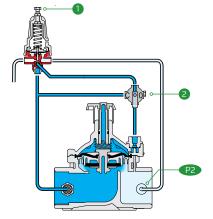
PRESSURE REDUCING VALVE Model IR-220-3W-XZ

The BERMAD Pressure Reducing Valve is a hydraulically operated, diaphragm actuated control valve that reduces higher upstream pressure to lower constant downstream pressure and opens fully upon line pressure drop.

[1] BERMAD Model IR-220-3W-XZ establishes reduced pressure zone, protecting laterals and distribution line.

- [2] BERMAD Kinetic Air Valve Model IR-K10
- [3] BERMAD Combination Air Valve Model IR-C10

Features & Benefits


- Line Pressure Driven, Hydraulically Controlled
 - Protects downstream systems
 - Opens fully upon line pressure drop
- Smooth valve opening and closing
 - Accurate and stable regulation
 - Low operating pressure requirements
- Plastic Globe Hydro-Efficient Valve
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
- Highly durable, chemical and cavitation resistant
- Unitized Flexible Diaphragm and Guided Plug
 - Excellent low flow regulation performance
 - Prevents diaphragm erosion and distortion
- Fully Supported & Balanced Diaphragm
 - Requires low actuation pressure
- User-Friendly Design
 - Simple in-line inspection and service

Typical Applications

- Drip Systems
- Pressure Reducing Stations
- Systems Subject to Varying Supply Pressure
- Landscape
- Energy Saving Irrigation Systems

Operation:

The Pressure Reducing Pilot ① commands the main Valve to throttle closed should Downstream Pressure P2 rise above pilot setting, and to open fully when it drops below pilot setting. The Manual Selector 2 enables local manual closing.

Irrigation

200 Series Pressure Reducing

Technical Data

Pressure Rating: 10 bar; 145 psi

IR-220-3W-XZ

Operating Pressure Range: 0.5-10 bar; 7-145 psi

Setting Range: 1-7 bar; 15-100 psi

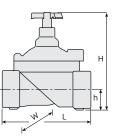
Setting ranges vary according to specific pilot spring. Please consult factory

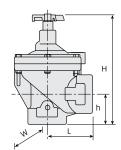
Technical Specifications

Dimensions & Weights

For more details of **BERMAD** 200 series Please see our full engineering page.

Materials:


Body, Cover and Plug: Polyamid 6 & 30% GF Diaphragm: NBR Seals: NBR Spring: Stainless Steel Cover Bolts: Stainless Steel


Control Accessories:

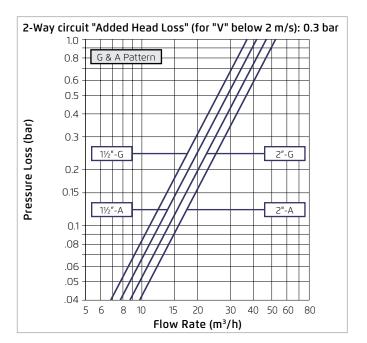
Tubing and Fittings: Plastic

Pilot Spring Range:

Spring	Spring color	Setting Range
J	Green	0.2-1.7 bar
К	Gray	0.5-3.0 bar
Ν	Colorless	0.8-6.5 bar

Sizes Inch ; DN	1½″	; 40	2" ; 50	
Pattern	Globe	Angle	Globe	Angle
L (mm)	160	80	170	85
H (mm)	180	190	190	210
W (mm)	125	125	125	125
h (mm)	35	40	38	60
Weight (kg)	1	0.95	1.1	0.91

Flow Properties


Sizes	Inch DN	1½″ 40	1½″ 40	2″ 50	2″ 50
Pattern		G	А	G	А
К٧		37	41	47	52

Valve Flow Coefficient

$$\Delta \mathsf{P} = \left(\frac{\mathsf{Q}}{\mathsf{K}\mathsf{v}}\right)^2$$

 $Kv = m^3/h \odot \Delta P$ of 1 bar $Q = m^3/h$ $\Delta P = bar$

Flow Chart

