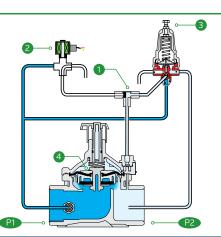
PRESSURE REDUCING VALVE

WITH SOLENOID CONTROLLED

Model IR-220-55-3W-X

The BERMAD Pressure Reducing Control Valve with Solenoid Control is a hydraulically operated, diaphragm actuated control valve that reduces higher upstream pressure to lower constant downstream pressure regardless of fluctuating demand, and opens fully upon line pressure drop. The BERMAD Model IR-220-55-3W-X either opens or shuts in response to an electric signal.

- [1] BERMAD Model IR-220-55-3W-X opens in response to electric signal, and establishes reduced pressure zone protecting laterals and distribution line.
- [2] BERMAD Combination Air Valve Model IR-C10
- [3] BERMAD Kinetic Air Valve Model IR-K10


Features & Benefits

- Line Pressure Driven, Hydraulically Controlled
 - Protects downstream systems
 - Opens fully upon line pressure drop
 - Electrically controlled On/Off
- Smooth valve opening and closing
 - Accurate and stable regulation
 - Low operating pressure requirements
- Plastic Globe Hydro-Efficient Valve
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
- Highly durable, chemical and cavitation resistant
- Unitized Flexible Diaphragm and Guided Plug
 - Excellent low flow regulation performance
 - Prevents diaphragm erosion and distortion
- Fully Supported & Balanced Diaphragm
- Requires low actuation pressure
- User-Friendly Design
 Simple in-line inspection and service

- Typical Applications
- Computerized Irrigation Systems
- Drip Systems
- Pressure Reducing Stations
- Greenhouses Irrigation
- Systems Subject to Varying Supply Pressure
- Landscape
- Energy Saving Irrigation Systems

Operation:

The Shuttle Valve ① hydraulically connects the Solenoid ② or the Pressure Reducing Pilot (PRP) ③ to the Valve Control Chamber ④. When the solenoid is closed, the PRP commands the Valve to throttle closed should Downstream Pressure ④ rise above setting and to open fully when ④ is below seting. In response to an electric signal, the solenoid switches, directing line pressure through the shuttle valve into the control chamber, shutting the Valve. The solenoid also features local manual closing.

Irrigation

Technical Data

IR-220-55-3W-X

Pressure Rating: 10 bar; 145 psi

Operating Pressure Range: 0.5-10 bar; 7-145 psi

Setting Range: 1-7 bar; 15-100 psi

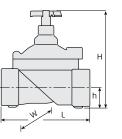
Setting ranges vary according to specific pilot spring. Please consult factory

Technical Specifications

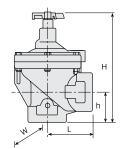
Dimensions & Weights

For more details of <u>BERMAD</u> 200 series Please see our full engineering page.

Materials:


Body, Cover and Plug: Polyamid 6 & 30% GF Diaphragm: NBR Seals: NBR Spring: Stainless Steel Cover Bolts: Stainless Steel

Control Accessories:


Tubing and Fittings: Plastic

Pilot Spring Range:

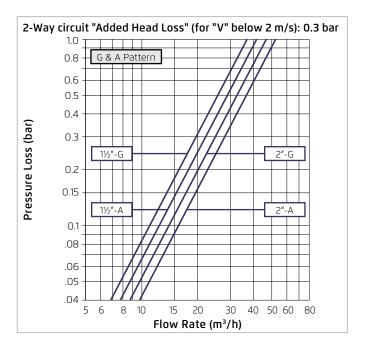
Spring	Spring color	Setting Range
J	Green	0.2-1.7 bar
К	Gray	0.5-3.0 bar
Ν	Colorless	0.8-6.5 bar

Solenoid Voltage Range: S-390 & S-400: 24 VAC, 24 VDC S-392-T & S-402: 9-20VDC Latch S982 & S985: 12-50 VDC Latch Other Voltages available

Sizes Inch ; DN	11/2″	; 40	2" ; 50	
Pattern	Globe	Angle	Globe	Angle
L (mm)	160	80	170	85
H (mm)	180	190	190	210
W (mm)	125	125	125	125
h (mm)	35	40	38	60
Weight (kg)	1	0.95	1.1	0.91

Flow Properties

Sizes Inch DN	1½″ 40	1½″ 40	2″ 50	2″ 50
Pattern	G	А	G	А
KV	37	41	47	52


www.bermad.com

Valve Flow Coefficient

$$\Delta \mathsf{P} = \left(\frac{\mathsf{Q}}{\mathsf{K}\mathsf{v}}\right)^2$$

Kv = m³/h @ ΔP of 1 bar Q = m³/h ΔP = bar

Flow Chart

