

1000 COMPOSITE SERIES

ENGINEERING DATA

Main Benefits

Advanced Composite Polymer Material

Strong, inert and light weight; bringing the next generation of materials to the water supply industry **Unitized Actuator Assembly** Allows fast and simple in-line maintenance

> **Reinforced Rolling Diaphragm** Durable and flexible operation

Unobstructed Flow

High capacity semistraight flow for exceptionally low head loss

Internal Threads or Adaptors Flexible option for Threaded, Groove or Flange connection

The BERMAD 1000 Composite Series is at the leading edge of control valve design, providing a valve that is free of the typical limitations associated with standard control valves.

Superior Performance

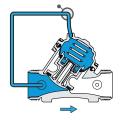
A unitized flexible super-travel diaphragm & guided plug provide a significantly 'look through' passage resulting in accurate & stable regulation and ultra-high flow capacity.

Easy Maintenance

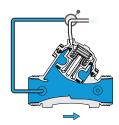
Simple single unit actuator provide ease of maintenance with minimal downtime and no need of special tools or heavy lifting.

Flexible Installation

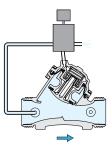
The 1000 unique body design allows on-site adaption to a wide range of end connection types and sizes. Its articulated flange connections isolate the valve from pipeline bending & pressure stresses.



ISO 9001-2015 Certified Quality Assurance System

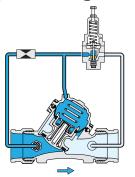

Principle of Operation

On-Off Modes

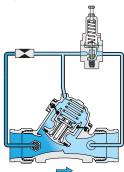

Closed Position

Line pressure applied to the control chamber of the valve creates a superior force that moves the valve to the closed position and provides drip-tight sealing

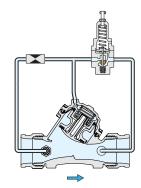
Open Position


Discharging the pressure in the control chamber to atmosphere or some other lower pressure zone causes the line pressure acting on the plug to move the valve to the open position.

Solenoid Control


Line pressure can be applied or discharge from the valve control chamber by controlling the position of the solenoid, allowing to control the valve position remotely.

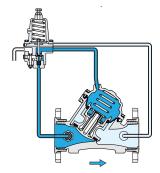
2-Way Modulating Mode - Pressure Reducing


Closed Position

The closed adjustable pilot valve traps line pressure in the upper control chamber. The resulting superior force moves the valve to the fully closed position and provides drip-tight sealing.

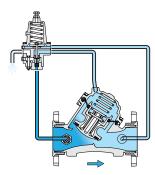
Modulating Position

The pilot valve senses line pressure changes and opens or closes accordingly. It controls the accumulated pressure in the valve control chamber, causing main valve to modulate to an intermediate position and maintain the preset pressure value.

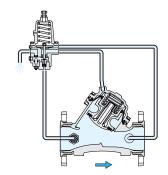


Open Position

The open pilot valve releases line pressure from the upper control chamber.


The line pressure acting on both the diaphragm and the plug moves the valve to the open position.

3-Way Modulating Mode - Pressure Reducing


Closed Position

The pilot responds to high downstream pressure and introduces upstream pressure to the upper control chamber. The valve plug move to close or is sealing drip-tight.

Modulating Position

When the downstream pressure is equal to setting, the plunger in the pilot valve moves to block all passages and freezes the valve. The pilot valve responds to downstream pressure changes and moves the valve to maintain the setting by either venting or pressurizing the control chamber.

Open Position

When downstream pressure is lower than the setting, the plunger in the pilot valve moves to vent the pressure from the control chamber, allowing the valve to fully open. This minimizes pressure loss and ensures maximum possible downstream pressure.

Technical Specification

Maximum Working Pressure:

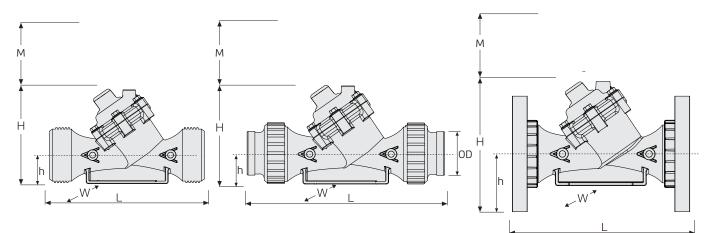
11/2"EN-4"ES: 250 psi / PN16 Valve Pattern: Y (Oblique) Temperature: for Cold Water Applications For Hot Water Applications Consult Bermad.

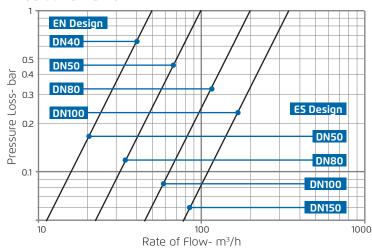
End Connections:

Threaded: Female BSP.T (Rc-7) or NPT Grooved: According to ISO-6182-12 Flanged - Universal Corona Adaptor: ISO-10/16, ANSI 125/150, BST-D, JIS-10K

Construction Materials:

- 1. Cover Bolts: Stainless Steel
- 2. Cover: Reinforced Polyamide
- 3. Closing Spring: Stainless Steel
- 4. Plug Assembly:
 - 4.1. Diaphragm: EPDM
 - 4.2. Diaphragm Holder: Reinforced Polyamide
 - 4.3. Plug: Reinforced Polyamide
 - 4.4. Plug Seal: EPDM


5. Valve Body: Reinforced Polyamide [1] Cover Bolts 6. Corona Flange Adaptor: Adaptor: Reinforced Polyamide [2] Cover Flange: Epoxy Coated Ductile Iron **O-Ring:** EPDM 7. Grooved Adaptor: Reinforced Polyamide [3] Auxiliary Closing Spring **O-Ring:** EPDM [4] Plug Assembly [4.1] Diaphragm [4.2] Diaphragm Holder [4.3] Plug [4.4] Plug Seal **Threaded Connection** [6] Corona Flange Adaptor [5] Valve Body [7] Grooved Adaptor


Dimensions and Weights - Y Pattern

			EN - H	EN - High Flow Capacity		
Nominal Diameter		inch	11⁄2"	2"	3"	
		mm	40	50	80	
Threaded	L	mm	200	230	298	
	W	mm	97	135	168	
	h	mm	40	43	60	
	Н	mm	172	169	243	
	Weight	kg	1.2	1.6	3.3	
	OD	mm	-	60.3	88.9	
	L	mm	-	284	384	
Crooved	W	mm	-	135	168	
Grooved	h	mm	-	43	62	
	Н	mm	-	169	245	
	Weight	kg	-	1.7	3.4	
	L	mm	-	-	310	
Flanged	W	mm	-	-	200	
	h	mm	-	-	100	
	Н	mm	-	-	282	
	Weight	kg	-	-	4.7	
M - Maintenance space		mm	80	100	145	
Control Chamber Volume		liters	0.12	0.15	0.62	
Pressure Rating		PN	16	16	16	
Kv		m³/h/bar	50	100	200	
K		-	1.6	1.0	1.6	

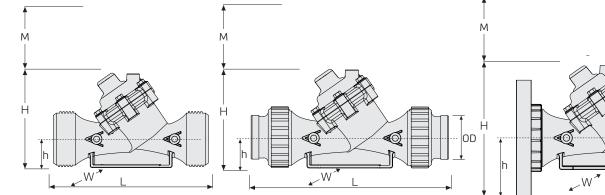
ES - Normal Flow Capacity					
2"	3"	4"			
50	80	100			
230	298	-			
97	135	-			
40	55	-			
172	181	-			
1.3	1.8	-			
60.3	88.9	114.3			
284	384	384			
97	135	168			
40	62	62			
172	188	245			
1.4	1.9	4.1			
-	308	350			
-	200	224			
-	100	112			
-	226	294			
-	4.6	7.8			
80	100	145			
0.12	0.15	0.62			
16	16	16			
50	100	200			
3.9	6.4	3.9			

Flow Chart

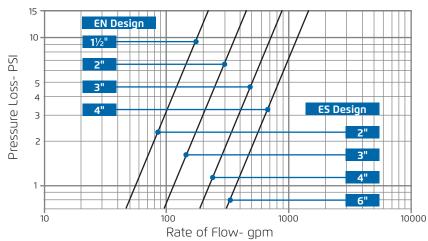
Kv=Valve flow coefficient (flow in m³/h at Δ P=1bar) Q=Flow rate (m³/h) Δ P=Differential pressure (bar)

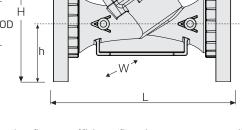
$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$

Q=Kv∗√∆P


$$Kv = \frac{Q}{\sqrt{\Delta P}}$$

US Units


Dimensions and Weights - Y Pattern


			EN - High Flow Capacity		
Nominal Diameter		inch	11⁄2"	2"	3"
		mm	40	50	80
Threaded	L	inch	7.87	9.06	11.73
	W	inch	3.82	5.31	6.61
	h	inch	1.57	1.69	2.36
	Н	inch	6.77	6.65	9.57
	Weight	lbs	2.6	3.6	7.3
	OD	inch	-	2.37	3.50
	L	inch	-	11.18	15.12
Grooved	W	inch	-	5.31	6.61
	h	inch	-	1.69	2.44
	Н	inch	-	6.65	9.65
	Weight	lbs	-	3.8	7.5
	L	inch	-	-	12.13
	W	inch	-	-	7.87
Flanged	h	inch	-	-	3.94
	Н	inch	-	-	11.10
	Weight	lbs	-	-	8.4
M - Maintenance space		inch	3.15	3.94	5.71
Control Chamber Volume		gallons	0.026	0.033	0.136
Pressure Rating		psi	250	250	250
Cv		gpm/psi	58	116	231
К		-	1.6	1.0	1.6

ES - Normal Flow Capacity					
2"	3"	4"			
50	80	100			
9.06	11.73	-			
3.82	5.31	-			
1.57	2.17	-			
6.77	7.13	-			
2.9	3.9	-			
2.37	3.50	4.50			
11.18	15.12	15.12			
3.82	5.31	6.61			
1.57	2.44	2.44			
6.77	7.40	9.65			
3.1	4.1	9.0			
-	12.13	13.78			
-	7.87	8.82			
-	3.94	4.41			
-	8.90	11.57			
-	10.0	17.2			
3.15	3.94	5.71			
0.026	0.033	0.136			
250	250	250			
58	116	231			
3.9	6.4	3.9			

Flow Chart

Cv=Valve flow coefficient (flow in gpm at $\Delta P=1$ psi) Q=Flow rate (gpm) $\Delta P=$ Differential pressure (psi)

$$\Delta P = \left(\frac{Q}{Cv}\right)^2$$
$$Q = Cv * \sqrt{\Delta P}$$

$$Cv = \frac{Q}{\sqrt{\Delta P}}$$