BERMAD Fire Protection

Pressure Reducing

Valve

Model: FP 420-00

Description

The Model FP 420-00 Pressure Reducing Valve is a hydraulically self operated, diaphragm actuated control valve that reduces high, unstable upstream pressure to maintain precise stable downstream pressure, regardless of flactuating demand or varying upstream pressure.

Typical Applications

Hose station feeds

Sprinkler systems with over pressure

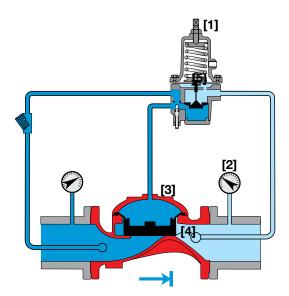
Deluge systems with over pressure

Foam systems

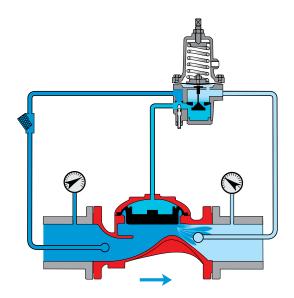
Fire hydrant water supply

Features and Benefits

- Advanced Elastomeric Globe type Low pressure loss
- One-piece molded elastomeric moving part No maintenance required
- **Simple design –** Cost effective
- Factory pre-assembled trim Out-of-Box Quality
- In-line serviceable Minimal down time


Optional Features

- Large control filter (code: F)
- Seawater service
- Valve Position Single/Double Limit Switches
- Note: Optional features can be mixed and matched. Consult your Bermad representative for full details



The BERMAD Model FP 420-00, pilot operated pressure reducing valve automatically and accurately reduces upstream water pressure to a specific, adjustable value. The FP 420-00 operates under both flowing and non-flowing (static) conditions. The Pressure Reducing Pilot **[1]** senses downstream pressure **[2]** and in real time modulates the main valve **[3]** to maintain the constant downstream pressure.

In no-flow static conditions, should the downstream pressure start rising above pilot setting, the pilot closes, shutting the main valve drip-tight **[4]** to maintain the allowable downstream pressure.

Valve Closed (static condition)

400 Series

Valve Open (flowing condition)

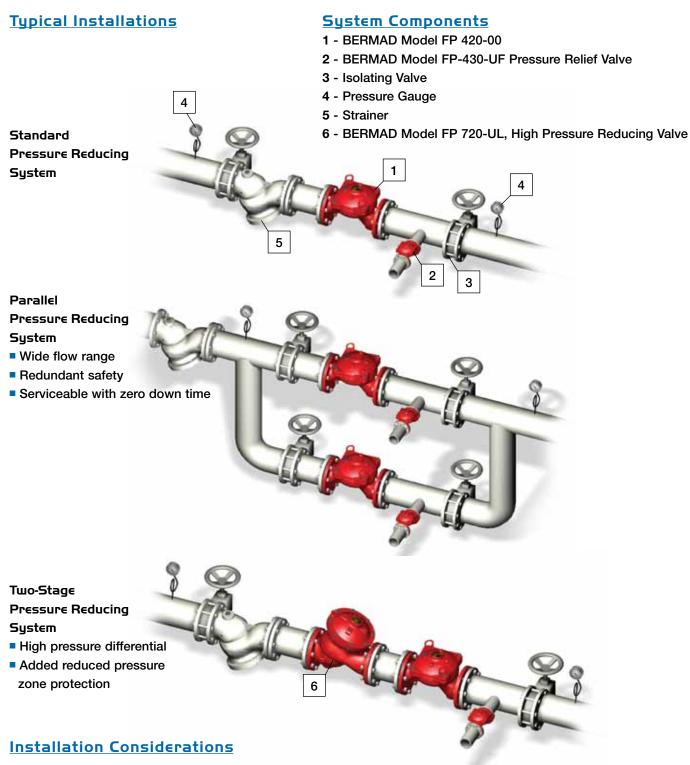
Engineer Specifications

The pressure reducing valve shall eliminate downstream over-pressure, maintaining a constant downstream delivery pressure, regardless of varying pressures and/or flows.

The main valve shall be an elastomeric type globe valve with a rolling-diaphragm.

Valve actuation shall be accomplished by a fully peripherally supported, one-piece balanced rolling-diaphragm, vulcanized with a rugged radial seal disk. The diaphragm assembly shall be the only moving part.

The valve shall have an **unobstructed flow path**, with no stem guide or **supporting ribs**.

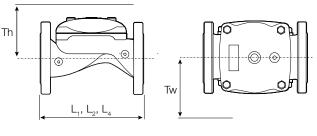

The valve shall have a removable cover for quick in-line service enabling all necessary inspection and servicing. The control trim shall be supplied as an assembly, pre-assembled and hydraulically tested at an ISO 9000 and 9001 certified factory.

BERMAD Fire Protection

Model: FP 420-00

400 Series

- Allow enough room around the valve assembly for any future maintenance.
- Install isolating valves upstream and downstream of the system.
- Install the valve horizontally with the cover facing up (consult Bermad for other configurations).
- Install a relief valve (recommended: BERMAD Model FP 430-UF) of the appropriate size on the downstream side of the FP 420-00, as required by NFPA-20 standard.
- Install a pressure gauge on each side of the system.



BERMAD Fire Protection

Model: FP 420-00

400 Series

Technical Data

Size		2"		21⁄2"		3"		4"		6"		8"		10"		12"	
		mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch
Dimensions	L ₁ ⁽¹⁾	205	8 ¹ /2	205	8 ¹ / ₂	257	101/8	320	12%/16	415	165/16	500	1911/16	605	2313/16	725	281/2
	L ₂ ⁽²⁾	180	7 ¹ / ₁₆	210	8 ¹ /4	255	101/16	N/A	N/A	N/A	N/A	500	1911/16	N/A	N/A	N/A	N/A
	L ₄ ⁽²⁾	180	7 ¹ / ₁₆	210	8 ¹ /4	255	101/16	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Tw	284	11 ³ / ₁₆	284	11 ³ / ₁₆	300	11 ³ / ₁₆	313	125/16	341	137/16	415	165/16	443	17 ⁷ /16	481	1815/16
	Th	210	8 ¹ /4	210	8 ¹ /4	215	87/16	243	9 ⁹ / ₁₆	315	12 ³ /8	350	13 ³ /4	382	15	430	6 15/16

Notes:

1. L₁ is for flanged valves.

2. L₂ is for threaded NPT or ISO-7-Rp.

3. L_{4}^{-} is for grooved end connections Ductile Iron Only).

4. Tw & Th are max. for pilot system.

5. Data is for envelope dimensions, component positioning may vary.

6. Provide space around valve for maintenance.

Connection Standard

- Flanged: ANSI B16.42 (Ductile Iron), B16.5 (Steel & Stainless Steel), B16.24 (Bronze)
- ISO PN16
- Threaded: NPT or ISO-7-Rp for 2, 21/2 & 3" • Grooved: ANSI/AWWA C606 for 2, 3, 4, 6 & 8"

Water Temperature

• 0.5 - 50°C (33 - 122°F)

Available Sizes

• Globe: 2, 21/2, 3, 4, 6, 8, 10 & 12" **Pressure Rating**

- Max. inlet: 250 psi (17 bar)
- Set: 30 165 psi (2 11.5 bar)
- Test : 365 psi (25 bar)

Approvals

- ABS Lloyd's Registered

Manufacturers Standard Materials

- Main valve body and cover
- Ductile Iron ASTM A-536
- Main valve internals
- Stainless Steel & Elastomer
- **Control Trim System**
- Brass control components/accessories
- Stainless Steel 316 tubing & fittings

Elastomers

- Polyamide fabric reinforced Polyisoprene, NR Coating
- · Electrostatic Powder Coating Polyester, Red (RAL 3002)

Optional Materials

- Main valve body
- Carbon Steel ASTM A-216 WCB
- Stainless Steel 316
- Ni-Al-Bronze ASTM B-148 Control Trim
- Stainless Steel 316 • Monel® and Al-Bronze
- Hastelloy C-276
- **Elastomers**
- NBR
- EPDM
- Coating
- High Build Epoxy Fusion-Bonded
- with UV Protection, Anti-Corrosion

bermadfire@bermad.com • www.bermad.com

The information herein is subject to change without notice. BERMAD shall not be held liable for any errors. All rights reserved. © Copyright by BERMAD. PE4PE200 11