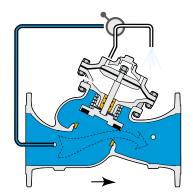
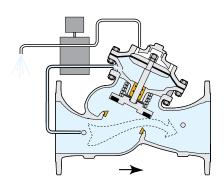


Principle of Operation

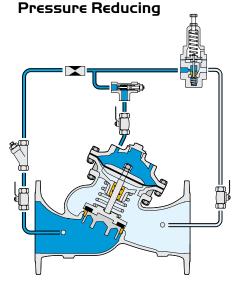

700-ES Series

On-Off Modes

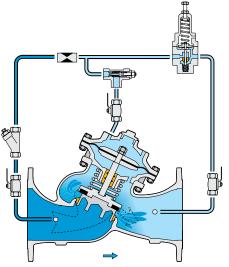

Closed Position

Line pressure applied to the upper control chamber of the valve creates a superior force that moves the valve to the closed position and provides drip-tight sealing.

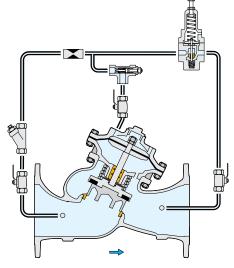
Open Position


Discharging the pressure in the upper control chamber to atmosphere or some other lower pressure zone causes the line pressure acting on the seal-disk to move the valve to the open position.

Powered Open Position


Line pressure is applied to the lower control chamber as pressure in the upper control chamber is vented. This, together with the line pressure acting on the seal-disk, creates a force that powers the valve to the open position.

Modulating Mode


Closed Position

The closed adjustable pilot valve traps line pressure in the upper control chamber. The resulting superior force moves the valve to the fully closed position and provides drip-tight sealing.

Modulating Position

The pilot valve senses line pressure changes and opens or closes accordingly. It controls the accumulated pressure in the valve upper control chamber, causing main valve to modulate to an intermediate position and maintain the preset pressure value.

Open Position

The open pilot valve releases line pressure from the upper control chamber. The line pressure acting on both the lower control chamber and the seal-disk, moves the valve to the open position.

* All text written above is valid for both 700 and 800 Series.

Technical Specifications

700-ES Series

700 ES Series

Available Sizes & Patterns

■ DN 40 - DN 600 (1½" - 24") - Y Pattern

Pressure Rating

PN 25 (according to connection rating)

Connection Standard

■ Flanged: ISO 7005-2 (ISO 10, 16 & 25)

Water Temperature

■ Up to 80°C

Standard Materials

□ Main valve body and cover

Ductile iron to EN 1563 or ASTM A-536

Main valve internals

Stainless steel, bronze & epoxy coated steel

Control Trim

Stainless steel, Brass, bronze accessories Stainless steel 316 fittings & tubing

Elastomers

Synthetic Rubber

Coating

Blue fusion bonded epoxy

700 EN Series

Available Sizes & Patterns

■ DN 50 - DN 300 (2" - 12") - Y Pattern

Pressure Rating

PN 25 (according to connection rating)

Connection Standard

■ Flanged: ISO 7005-2 (ISO 10, 16 & 25)

Water Temperature

■ Up to 80°C

Standard Materials

Main valve body and cover Ductile iron to EN 1563 or ASTM A-536

Main valve internals

Stainless steel, bronze & epoxy coated steel

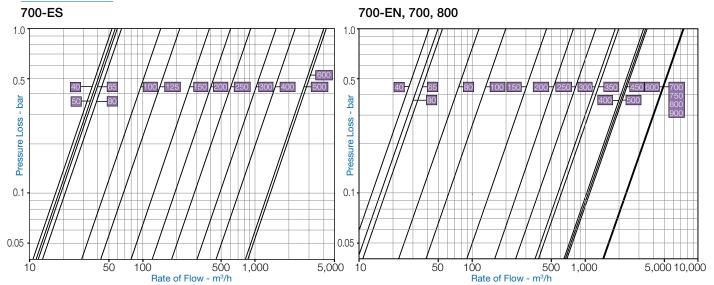
Control Trim

Stainless steel, Brass, bronze accessories Stainless steel 316 fittings & tubing

Elastomers

Synthetic Rubber

Coating


Blue fusion bonded epoxy

Flow Data 700-ES Series

Flow Charts

Flow Properties

700-ES		mm	40	50	65	80	100	125	150	200	250	300	400	500	600
		inch	1.5"	2"	2.5"	3"	4"	5"	6"	8"	10"	12"	16"	20"	24"
Y-Pattern		Kv	54	57	60	65	145	215	395	610	905	1,520	2,250	4,070	4,275
Flat Disc		Cv	62	66	69	75	168	248	456	705	1,046	1,756	2,600	4,703	4,938
Y-Pattern		Kv	46	48	51	55	123	183	336	519	769	1,292	2,027	3,460	3,634
U-Plug		Cv	53	55	59	64	142	211	388	599	888	1,492	2,341	3,996	4,197
		mm	40	50	65	80	100	150	200	250	300	350	400	450	500
700-EN / 70	00 / 800	inch	1.5"	2"	2.5"	3"	4"	6"	8"	10"	12"	14"	16"	18"	20"
Y-Pattern		Kv	42	50	55	115	200	460	815	1,250	1,850	1,990	3,310	3,430	3,550
Flat Disc		Cv	49	58	64	133	230	530	940	1,440	2,140	2,300	3,820	3,960	4,100
Y-Pattern		Kv	36	43	47	98	170	391	693	1,063	1,573	1,692	2,814	2,916	3,018
V-Port		Cv	41	49	54	113	200	450	800	1,230	1,820	1,950	3,250	3,370	3,490
Angle	<u></u>	Kv	46	55	61	127	220	506	897	1,375	2,035	2,189	3,641	3,773	NA
Flat Disc		Cv	53	64	70	146	250	580	1,040	1,590	2,350	2,530	4,210	4,360	NA
Angle	<u>م</u> . ۾.	Kv	39	47	51	108	187	430	762	1,169	1,730	1,861	3,095	3,207	NA
V-Port		Cv	45	54	59	124	220	500	880	1,350	2,000	2,150	3,580	3,710	NA

700 Large Dia	mm	600	700	750	800	900	
700 Earge Die	arrotor	inch	24"	28"	30"	32"	36"
G-Pattern		Κv	7,350	7,500	7,500	7,500	7,500
Flat Disc		Cv	8,490	8,670	8,670	8,670	8,670

Valve flow coefficient, Kv or Cv

$$Kv(Cv)=Q\sqrt{\frac{G_f}{\Delta P}}$$

Where:

 $Kv = Valve flow coefficient (flow in <math>m^3/h$ at 1bar Diff. Press.)

3 Cv = Valve flow coefficient (flow in gpm at Diff. Press. 1psi)

Q = Flow rate (m³/h ; gpm)

 ΔP = Differential pressure (bar; psi)

Gf = Liquid specific gravity (Water = 1.0)

Cv = 1.155 Kv

Cavitation 700-ES Series

Cavitation

The cavitation phenomenon has a significant affect on control valve and system performance.

Cavitation may damage the valve and piping by the affects of erosion and vibration. Cavitation also generates noise and may limit and ultimately choke the flow.

As the pressure differential across the valve increases, the static pressure of the flow passing through the throttling area of the valve (Vena Contracta) drops sharply.

When the fluid's static pressure reaches liquid vapor pressure, vapor cavities (bubbles) form and grow until they violently implode by the recovered pressure downstream to the valve seat.

The implosion of these cavities generates high-pressure surges, micro jets and intensive heat, which erode valve components and downstream piping. In its final stage, cavitation flashes and chokes the flow.

The Cavitation Guide is based on the formula commonly used in the valve industry:

$$\sigma = (P2-Pv) / (P1-P2)$$

Where:

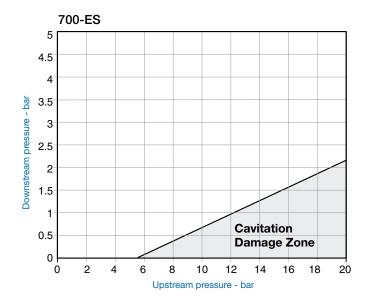
σ = Sigma, cavitation index, dimensionless

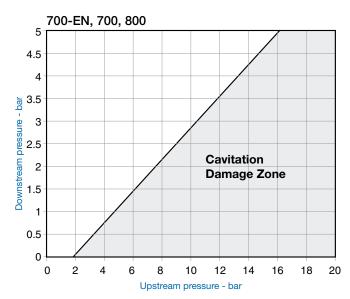
P1 = Upstream pressure, absolute

P2 = Downstream pressure, absolute

Pv = Liquid vapor pressure, absolute

(Water, 18°C = 0.02 bar-a; 65°F = 0.3 psi-a)


Use these guides and your applications upstream and downstream pressures to determine whether their intersection lies in or out of the cavitation damage zone. Considerations to avoid cavitation damage:


- A) Reduce system pressure in stages designing each pressure stage to be above cavitation conditions.
- B) Consider using other valve selection criteria
 - a. Valve body and plug type
 - b. Valve size
 - c. Valve material

Notes:

- An alternate cavitation index formula introduced by ISA is:
 - $\sigma_{ISA} = (P1-Pv) / (P1-P2)$ which equals σ_{+1}
- 2. The above charts should be considered only as a general guide.
- 3. For optimum system and control valve application please consult Bermad.

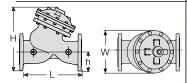
Cavitation Guide

Dimensions & Weights

700-ES Series

Flanged

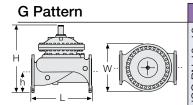
700-ES Series


}	/ Pattern	
† H	W PRO	

	DN	40	50	65	80	100	125	150	200	250	300	400	500	600
25	L*	230	230	290	310	350	400	480	600	730	850	1,100	1,250	1,450
16;	W	150	165	185	200	235	270	300	360	425	530	626	838	845
10;		80	90	100	105	125	142	155	190	220	250	320	385	435
		240	250	250	260	320	375	420	510	605	725	895	1,185	1,235
8	Weight (Kg)	10	10.8	13.2	15	26	40	55	95	148	255	436	1,061	1,173

^{*} Length according to EN 558-1

700-EN Series


Y Pattern

	DN	50	80	100	150	200	250	300
25		230	310	350	480	600	730	850
	W	165	200	235	320	390	480	550
10;		82.5	100	118	150	180	213	243
N.	Н	244	305	369	500	592	733	841
80	Weight (Kg)	9.7	21	31	70	115	198	337

^{*} Length according to EN 558-1

700 Series - Large Diameter

	DN	600	700	750	800	900			DN	600	700	750	800	900
16	L*	1,450	1,650	1,750	1,850	1,850	25	L*		1,500	1,650	1,750	1,850	1,850
ö	W	1,250	1,250	1,250	1,250	1,250	ő	W		1,250	1,250	1,250	1,250	1,250
Z	h	470	490	520	553	600	Z	h		470	490	520	553	600
	Н	1,965	1,985	2,015	2,048	2,095	ОР	Н		1,965	1,985	2,015	2,048	2,095
<u> </u>	h H Weight (Kg)	3,250	3,700	3,900	4,100	4,250	<u>S</u>	Weight	(Kg)	3,500	3,700	3,900	4,100	4,250

^{*} Length according to EN 558-1

Threaded

Angle Pattern
H / o ,
W-W
R
< > <

	DN	50	65	80
	L	121	140	159
F	W	122	122	163
NPT	R	40	48	55
BSP;	h	83	102	115
m	Н	225	242	294
	Weight (Kg)	5.5	7	15

Y Pattern	
H]-

	DN	40	50	65	80
	L	155	155	212	250
F	W	122	122	122	163
P					
BSP:	h	40	40	48	56
m	Н	201	202	209	264
	Weight (Kg)	5.5	5.5	8	17

Control Chamber Displacement Volume (liter)

DN	40	50	65	80	100	125	150	200	250	300	350	400	450	500	600-900
700-ES Series	0.125	0.125	0.125	0.125	0.3	0.45	0.5	2.15	4.5	8.5	N/A	12.4	N/A	29.8	29.8
700-EN Series	N/A	0.125	N/A	0.3	0.45	N/A	2.15	4.5	8.5	12.4	N/A	N/A	N/A	N/A	N/A

