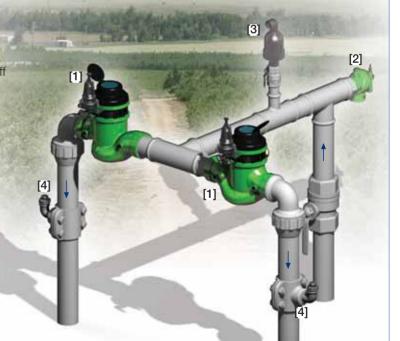
BERMAD Irrigation

900 Series

Pressure Reducing Standard

Pressure Reducing Hydrometer

Magnetic Drive with Hydraulic Control


IR-920-M0-50-KXZ

The BERMAD Model IR-920-M0-50-KXZ integrates a vertical turbine Woltman-type water meter with a diaphragm actuated hydraulic control valve. Serving as Flow Meter and Main Valve, it controls irrigation together with the irrigation controller. The BERMAD Hydrometer reduces higher upstream pressure to lower constant downstream pressure and opens fully upon line pressure drop. It either opens or shuts in response to remote pressure commands.

Features and Benefits

- Integrated "All-in-One" Control Valve
 - Saves space, cost and maintenance
- Line Pressure Driven, Hydraulically Controlled On/Off
 - Protects downstream systems
 - Opens fully upon line pressure drop
- Magnetic Drive with Vacuum-Sealed Register
 - □ Water-free gear train mechanism
 - Reed-switch and Opto pulse-generating modes
 - Various pulse combinations
- Internal Inlet & Outlet Flow Straighteners
 - Saves on straightening distances
 - Maintains accuracy
- Integrated Flow Metering Calibration Device
- User-Friendly Design
 - Easy pressure setting
 - Simple in-line inspection and service

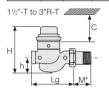
Typical Applications

- Computerized Irrigation Systems
- Remote Flow Data Read-Out
- Flow Monitoring & Leakage Control
- Pressure Reducing Stations
- Systems Subject to Varying Supply Pressure
- Distribution Centers
- Volumetric Irrigation Systems

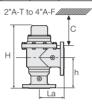
- [1] Bermad Model IR-920-M0-50-KXZ opens upon pressuredrop command, establishes reduced pressure zone, and measures flow.
- [4] Bermad Relief Valve Model IR-43Q-R
- [3] Bermad Air Valve Model ARC-A-P-I
- [2] Bermad Vacuum Breaker Model ½"-ARV

BERMAD Irrigation

IR-920-M0-50-KXZ


For full technical details, refer to Engineering Section.

900 Series Pressure Reducing Standard


Technical Specifications

Dimensions and Weights

Size	DN Inch	40-T 1 ¹ / ₂ -T	50-T 2-T	50A-T 2A-T	80R-T 3R-T	80R-F 4R-F	80-F 3-F	80A-F 3A-F	100-F 4-F	100A-F 4A-F
Lg	mm	250	250	N.A.	250	310	300	N.A.	350	N.A.
	inch	9.8	9.8	N.A.	9.8	12.2	11.8	N.A.	13.8	N.A.
La	mm	N.A.	N.A.	120	N.A.	N.A.	N.A.	150	N.A.	180
	inch	N.A.	N.A.	4.7	N.A.	N.A.	N.A.	5.9	N.A.	7.1
Н	mm	270	277	300	277	298	382	402	447	481
	inch	10.6	10.9	11.8	10.9	11.7	15.0	15.8	17.6	18.9
С	mm	210	210	210	210	225	285	285	365	365
	inch	9	9	9	9	9	11	11	15	15
h	mm	95	95	125	79	100	123	196	137	225
	inch	3.7	3.7	4.9	3.1	3.9	4.8	7.7	5.4	8.9
M*	mm	67	77	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	inch	2.6	3.0	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Weight	Kg	6.8	8.8	8.1	7.3	16	26.0	25.8	37.0	36.1
	lb.	15	19.4	17.4	16.1	35.3	57.3	56.2	81.6	78.9

Accuracy & Flow Data

Size	Accuracy	DN inch	40 1 ¹ / ₂	50 2	80R 3R	80 3	100 4
ISO 4064-1 Class			Α	Α		В	В
Q min	5%	m ³	0.8	0.8	1.2	1.2	1.8
(Minimum flow)	370	gpm	3.5	3.5	5.3	5.3	7.9
Qn, ISO 4064-1	2%	m ³	15	15	17	40	60
(Nominal flow)	2%	gpm	66	66	75	176	264
Qper=Q3	2%	m ³	25	40	40	100	160
(Permanent flow)	∠%	gpm	110	176	176	440	704

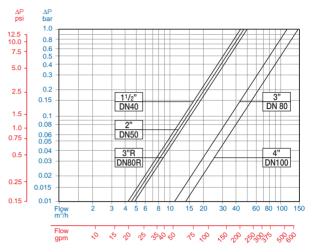
Pulse Option

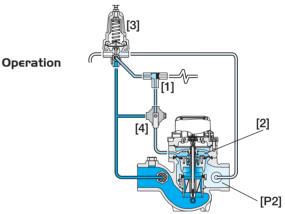
One pulse per	Liter ; Gallon					
Size	1; 0.1	10; 1	100; 10	1000; 100		
		A	A	A		
1 ¹ / ₂ -4"; DN50-100			A			
				A		

▲ R.S. = Reed-Switch ■ O.E. = Opto-Electric

Two parllel pulses are transmitted, other pulse rates are available on request.

Technical Data

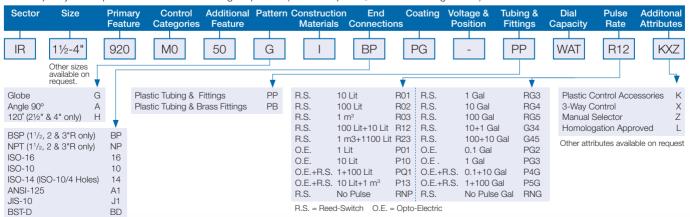

End Connections:


Threaded: 1½, 2 & 3"R; DN40, 50 & 80R Flanged: 3R, 3 & 4"; DN80R, 80 & 100 Pressure Rating: 10 bar; 145 psi Minimum Operating Pressure: 0.5 bar; 7 psi For lower pressure requirements, consult factory

Setting Range: 1-7 bar; 15-100 psi

Setting ranges vary according to specific pilot spring. Please consult factory.

Flow Chart



The Shuttle Valve [1] hydraulically connects the pilot to the Hydrometer Control Chamber [2]. The Pressure Reducing Pilot [3] commands the Hydrometer to throttle closed should Downstream Pressure [P2] rise above setting, and to open fully when it drops below setting. Upon pressure rise command, the shuttle valve automatically switches, allowing pressurization of the control chamber, which causes the Hydrometer to shut. The Manual Selector [4] enables manual closing.

How to Order

Please specify the requested valve in the following sequence: (for more options, refer to Ordering Guide.)

