Electronic Controlled Valve

Model MN-718-03

Hydraulically operated valve that responds to signals from the electronic controller BERMAD BE (optional), by changing its opening position according to set values programmed into the controller. This valve combines the advantages of an excellent modulating, line pressure driven, hydraulic control valve with the advantages of electronic control.

The Bermad 700 Series valves are hydraulic operated, diaphragm actuated, oblique pattern, globe valves with a seat assembly and double chambered unitized actuator that can be disassembled from the body as a separate integral unit.

The valve's hydrodynamic body is designed for unobstructed flow path and provides excellent and high effective modulation capacity for high differential pressure applications.

The 700 Series operate under difficult operating conditions with minimal cavitation and noise. They are made of the highest quality materials suitable for different mining applications.

Features and Benefits

- Self-operated valves that can work without an external source of power, just a command is needed:
 - Low power consumption
 - Low cost wiring
 - Normally Open, Normally Closed or Last Position
- Designed to stand up to the toughest conditions
 - Tamper resistant
 - Excellent anti-cavitation properties
 - High stability and accuracy
 - Drip tight sealing
- Double chamber actuator design:
 - Full powered opening and closing (option "B")
 - Protected diaphragm
 - Provide rapid response to sudden changes in system conditions
 - Simplified maintenance as it can be removed as a single unit. In-line serviceable
- Flexible design - Easy addition of optional features:
 - V-Port Throttling Plug - Allows for low flow stability
 - Obstacle free flow path

Major Additional Features

- Full powered opening & closing - 718 - 03 - B
- Check feature - 718 - 03 - 20
- Relief override - 718 - 03 - 3Q
- Downstream over pressure guard - 718 - 03 – 48
- External pressure control - 718 - e

See relevant BERMAD publications

List of Components:

[1] Electronic Controlled Valve 718
[2] Strainer 70F
[3] Combination Air Valve C70

Typical Installation

All images in this catalog are for illustration only
Control Schematic (*)

![Control Schematic](image)

Standard Configuration
- 1: 2W Cock Valve
- 3: 2W Cock Valve
- 4: Control Filter
- 5: Closing Needle Valve
- 5.1: Opening Needle Valve
- S17: Closing 3W Solenoid
- S17.1: Opening 3W Solenoid

Additional features (OPTIONAL)
- V: V-Port Plug
- F: Large Control Filter
- F1: Extra Large Control Filter
- I: Visual Position Indicator
- S: Electric Limit Switch
- Q: Analog Position Transmitter 4-20 mA
- U: Orifice Plate

(*) As a reference only. Components may vary based on valve’s size and class. For poor quality fluids, use of hydraulic relays is highly recommended.

Operation
- The main valve is equipped with two 2-way solenoid pilots.
- The interaction between the two solenoids determines the required opening position as signaled by the dedicated electronic controller (optional BERMAD BE).
- For a more closed position, then the closing solenoid must apply pressure to the upper control chamber, thereby, harnessing valve differential pressure to power the diaphragm actuator to close the main valve.
- For a more open position, the opening solenoid must vent the upper control chamber pressure to open the main valve.

Pressure Rating

<table>
<thead>
<tr>
<th>Class 150</th>
<th>Class 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Recommended Pressure</td>
<td>250 PSI</td>
</tr>
<tr>
<td>Available End Connection</td>
<td>Flanged ANSI#150, Grooved ANSI/AWWA C606, Threaded</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Components</th>
<th>Water Applications</th>
<th>Thermal Shock Applications</th>
<th>Base Solutions Applications</th>
<th>Acid Solutions Applications (***)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Valve</td>
<td>Body & Cover: Ductile Iron</td>
<td>Carbon Steel</td>
<td>Ductile Iron</td>
<td>Stainless Steel 316</td>
</tr>
<tr>
<td>Internals</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Stainless Steel 316</td>
</tr>
<tr>
<td>Elastomers</td>
<td>Synthetic rubber</td>
<td>Brass/Coated Steel</td>
<td>Synthetic rubber</td>
<td>Viton</td>
</tr>
<tr>
<td>Coating</td>
<td>Fusion Bonded Epoxy</td>
<td>Fusion Bonded Epoxy</td>
<td>Fusion Bonded Epoxy</td>
<td>Uncoated</td>
</tr>
<tr>
<td>Solenoid</td>
<td>Body: Brass</td>
<td>Brass</td>
<td>Stainless Steel 316</td>
<td>Stainless Steel 316</td>
</tr>
<tr>
<td>Internals</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Stainless Steel 316</td>
<td>Stainless Steel 316</td>
</tr>
<tr>
<td>Elastomers</td>
<td>Synthetic rubber</td>
<td>Synthetic rubber</td>
<td>Synthetic rubber</td>
<td>Viton</td>
</tr>
<tr>
<td>Control Loop Accessories</td>
<td>Accessories: Brass/Brass</td>
<td>Stainless Steel 316</td>
<td>Stainless Steel 316</td>
<td>Stainless Steel 316</td>
</tr>
<tr>
<td></td>
<td>Tubing & Fittings: Brass</td>
<td>Stainless Steel 316</td>
<td>Stainless Steel 316</td>
<td>Stainless Steel 316</td>
</tr>
</tbody>
</table>

(***) For highly aggressive acid solutions: Super Duplex, Hastelloy C-276, SMO-254 6-MO. Others by request.

Electrical Data

Solenoid Data:
- **Voltages:** (AC): 24, 110, 220 (DC): 12, 24, 110, 220
- **Power Consumption:** (AC): 30VA (inrush); 15VA (8W) holding (DC): 8W

Notes:
- Inlet pressure, outlet pressure and flow rate are required for optimal sizing and cavitation analysis.
- Recommended average flow velocity: 0.1-3.5m/sec; 0.3-11ft/sec. Intermittent flow velocity: 7.5m/sec-23ft/sec
- Minimum operating pressure: 0.7 bar / 10 PSI. For lower pressure requirements consult factory.