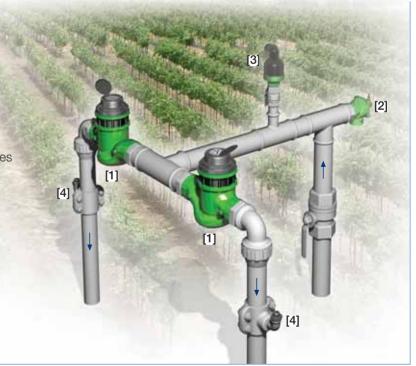
BERMAD Irrigation

900 Series

On/Off Control

Hydrometer

with Magnetic Drive


IR-900-M0-Z

The BERMAD Hydrometer with Magnetic Drive integrates a vertical turbine Woltman-type water meter with a diaphragm actuated hydraulic control valve. The impeller drive is magnetically coupled to a vacuum-sealed meter register in the control head. Serving as Flow Meter and Main Valve, the BERMAD Model IR-900-M0-Z controls irrigation together with the irrigation controller. It opens and shuts in response to remote hydraulic commands or locally by its manual selector.

Features and Benefits

- Integrated "All-in-One" Control Valve
 - Saves space, cost and maintenance
- Hydraulically Controlled Hydrometer
 - Line pressure driven
- Magnetic Drive with Vacuum-Sealed Register
 - Water-free gear train mechanism
- Reed-switch and Opto pulse-generating modes
- Various pulse combinations
- Internal Inlet & Outlet Flow Straighteners
 - Saves on straightening distances
 - Maintains accuracy
- Integrated Flow Metering Calibration Device
 - Precise measurement
- User-Friendly Design
 - □ Simple in-line inspection and service

Typical Applications

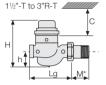
- Computerized Irrigation Systems
- Distribution Centers
- Remote Flow Data Read-Out
- Flow Monitoring & Leakage Control
- Water Treatment Systems
- Volumetric Irrigation Systems

- [1] BERMAD Model IR-900-M0-Z measures flow.
- [2] BERMAD Relief Valve Model IR-43Q-R
- [3] BERMAD Air Valve Model ARC-A-P-I
- [4] BERMAD Vacuum Breaker Model 1/2"-ARV

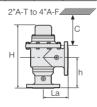
BERMAD Irrigation

IR-900-M0-Z

For full technical details, refer to Engineering Section.


900 Series

On/Off Control


Technical Specifications

Dimensions and Weights

Size	DN	40-T	50-T	50A-T	80R-T	80R-F	80-F	80A-F	100-F	100A-F
	Inch	1 ¹ / ₂ -T	2-T	2A-T	3R-T	4R-F	3-F	3A-F	4-F	4A-F
Lg	mm	250	250	N.A.	250	310	300	N.A.	350	N.A.
	inch	9.8	9.8	N.A.	9.8	12.2	11.8	N.A.	13.8	N.A.
La	mm	N.A.	N.A.	120	N.A.	N.A.	N.A.	150	N.A.	180
	inch	N.A.	N.A.	4.7	N.A.	N.A.	N.A.	5.9	N.A.	7.1
Н	mm	270	277	300	277	298	382	402	447	481
	inch	10.6	10.9	11.8	10.9	11.7	15.0	15.8	17.6	18.9
С	mm	210	210	210	210	225	285	285	365	365
	inch	9	9	9	9	9	11	11	15	15
h	mm	95	95	125	79	100	123	196	137	225
	inch	3.7	3.7	4.9	3.1	3.9	4.8	7.7	5.4	8.9
M*	mm	67	77	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	inch	2.6	3.0	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Weight	Kg	6.8	8.8	8.1	7.3	16	26.0	25.8	37.0	36.1
	lb.	15	19.4	17.4	16.1	35.3	57.3	56.2	81.6	78.9

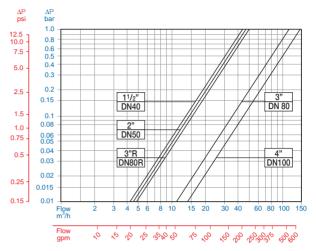
Accuracy & Flow Data

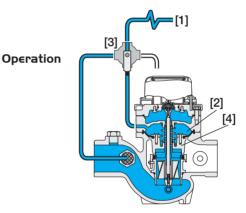
Size	Accuracy	DN inch	40 1 ¹ / ₂	50 2	80R 3R	80 3	100 4
ISO 4064-1 Class			Α	Α		В	В
Q min	5%	m³	0.8	0.8	1.2	1.2	1.8
(Minimum flow)	5%	gpm	3.5	3.5	5.3	5.3	7.9
Qn, ISO 4064-1	2%	m ³	15	15	17	40	60
(Nominal flow)	270	gpm	66	66	75	176	264
Qper=Q3	2%	m ³	25	40	40	100	160
(Permanent flow)	2%	gpm	110	176	176	440	704

Pulse Option

One pulse per	Liter ; Gallon						
Size	1; 0.1	10; 1	100; 10	1000; 100			
		A	A	A			
1 ¹ / ₂ -4"; DN50-100	•		A				
	•			A			

[▲] R.S. = Reed-Switch ■ O.E. = Opto-Electric

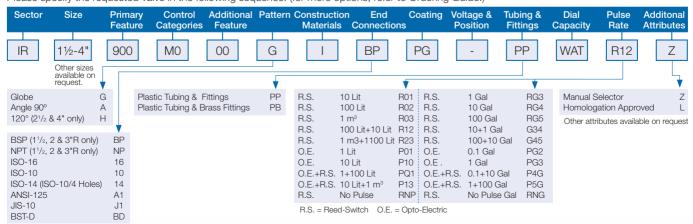

Technical Data


End Connections:

Threaded: 1½, 2 & 3"R; DN40, 50 & 80R Flanged: 3R, 3 & 4"; DN80R, 80 & 100 **Pressure Rating:** 16 bar; 232 psi

Minimum Operating Pressure: 0.5 bar; 7 psi For lower pressure requirements, consult factory

Flow Chart



Hydraulic Command [1] is applied to the Control Chamber [2], through the Manual Selector [3]. This creates a superior closing force that moves the Diaphragm Assembly [4] to a closed position. Discharging pressure from the control chamber, by turning the manual selector, causes the line pressure acting on the lower side of the diaphragm assembly to move the Hydrometer to an open position, and measure the flow rate.

How to Ord∈r

Please specify the requested valve in the following sequence: (for more options, refer to Ordering Guide.)

Two parllel pulses are transmitted, other pulse rates are available on request.