BERMAD Irrigation

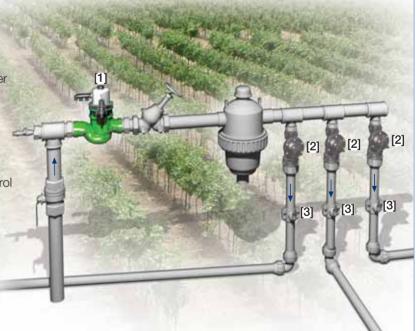
900 Series

Pressure Reducing Standard

Pressure Reducing Automatic Metering Valve (AMV)

IR-920-DO-KX

The BERMAD Pressure Reducing Automatic Metering Valve integrates a vertical turbine Woltman-type water meter with a diaphragm actuated hydraulic control valve. Equipped with a Mechanic Shut-Off Pilot and a Pressure Reducing Pilot, the BERMAD Model IR-920-D0-KX reduces higher upstream pressure to lower constant downstream pressure and opens fully upon line pressure drop. It automatically shuts itself after accurately delivering a preset quantity of water.



Features and Benefits

- Integrated "All-in-One" Control Valve
 - Saves space, cost and maintenance
- Easy Modification to Mechanical Drive Hydrometer
 - Adaptable to future computerized systems
- Hydraulic Pressure and 3-Way Batch Control
 - Line pressure driven
 - Protects downstream systems
 - Opens fully upon line pressure drop
 - Non-computerized quantity follow-up and control
- Internal Inlet & Outlet Flow Straighteners
 - Saves on straightening distances
 - Maintains accuracy
- Integrated Flow Metering Calibration Device
- Measurement precision to ±2%
- User-Friendly Design
 - Easy pressure and dose setting
 - □ Simple in-line inspection and service

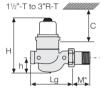
Typical Applications

- Semi-Automatic Irrigation
- Manual Irrigation intended for computerization
- Pressure Reducing Stations
- Systems liable to varying supply pressure
- Volumetric Irrigation Systems

- [1] BERMAD Model IR-920-D0-KX reduces pressure to protect filter and system, and delivers precise water quantity
- [2] BERMAD Pressure Reducing Valve Model IR-220-bKZ
- [3] BERMAD Vacuum Breaker Model 1/2"-ARV

BERMAD Irrigation

IR-920-DO-KX


For full technical details, refer to Engineering Section.

900 Series
Pressure Reducing

Technical Specifications

Dimensions and Weights

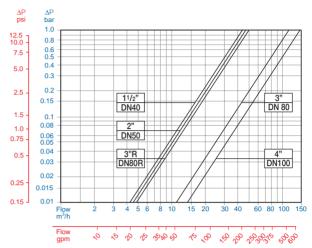
Size	DN	40-T	50-T	50A-T	80R-T	80R-F	80-F	80A-F	100-F	100A-F
	Inch	1 ¹ / ₂ -T	2-T	2A-T	3R-T	4R-F	3-F	3A-F	4-F	4A-F
Lg	mm	250	250	N.A.	250	310	300	N.A.	350	N.A.
	inch	9.8	9.8	N.A.	9.8	12.2	11.8	N.A.	13.8	N.A.
La	mm	N.A.	N.A.	120	N.A.	N.A.	N.A.	150	N.A.	180
	inch	N.A.	N.A.	4.7	N.A.	N.A.	N.A.	5.9	N.A.	7.1
Н	mm	293	300	322	300	298	405	425	470	500
	inch	11.5	11.8	12.7	11.8	11.7	15.9	16.7	18.5	19.7
С	mm	210	210	210	210	225	285	285	365	365
	inch	9	9	9	9	9	11	11	15	15
h	mm	95	95	125	79	100	123	196	137	225
	inch	3.7	3.7	4.9	3.1	3.9	4.8	7.7	5.4	8.9
M*	mm	67	77	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	inch	2.6	3.0	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Weight	Kg	6.8	8.8	8.1	7.3	16	26.0	25.8	37.0	36.1
	lb.	15	19.4	17.4	16.1	35.3	57.3	56.2	81.6	78.9

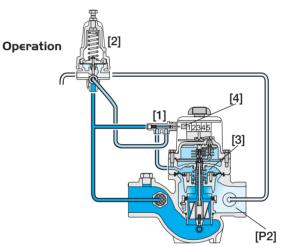
Accuracy & Flow Data (ISO 4064-I, Class A)

Size	Accuracy	DN inch	40 1¹/₂	50 2	3"R 80R	80 3	100 4
Q min	5%	m ³	0.8	0.8	1.2	1.2	1.8
(Minimum flow)	5%	gpm	3.5	3.5	5.3	5.3	7.9
Qn, ISO 4064-1	2%	m ³	15	15	17	40	60
(Nominal flow)	2%	gpm	66	66	75	176	264
Qper=Q3	2%	m ³	25	40	40	100	160
(Permanent flow)	2%	gpm	110	176	176	440	704

Dial Options

	_									_	_					
	Cubic Meter (m³)									1000 Gallon						
Capacity	40	80	120	150	200	350	009	800	1,200	2,100	13	50	130	200	200	870
		Cubic Meter (m³)								Gallon						
Graduation	-	_	2	2	5	10	10	10	20	50	100	1000	2,500	5,000	10,000	20,000
11/2" & 2"	-	-	-	-	-	-	-				•	-	-			
3"R							•				•		•	•		
3"				-	•	-	•	•	•			•	•	•	•	
4"					•	-	•		•			•				•

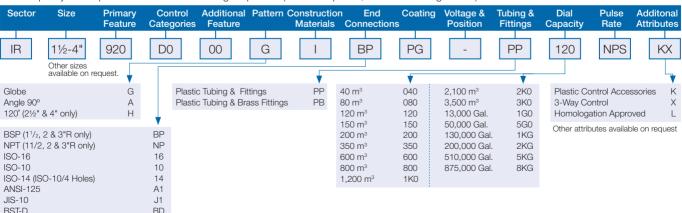

Technical Data


Pressure Rating: 10 bar; 145 psi Minimum Operating Pressure: 0.5 bar; 7 psi For lower pressure requirements, consult factory

Setting Range: 1-7 bar; 15-100 psi

Setting ranges vary according to specific pilot spring. Please consult factory.

Flow Chart



The Shut-Off Pilot (SOP) [1] connects the Pressure Reducing Pilot (PRP) [2] to the AMV Control Chamber [3]. The PRP commands the AMV to throttle closed should Downstream Pressure [P2] rise above setting and to open fully when it drops below setting. Upon delivering the preset quantity of water, the AMV manually preset Control Head Mechanism [4] switches the SOP, which directs line pressure into the control chamber causing the AMV to shut.

How to Order

Please specify the requested valve in the following sequence: (for more options, refer to Ordering Guide.)

