

PRESSURE REDUCING VALVE

NORMALLY CLOSED WITH HYDRAULIC CONTROL

Model IR-220-54-3W-X

The BERMAD Normally Closed, Pressure Reducing Valve with Hydraulic Control, is a hydraulically operated, diaphragm actuated control valve that reduces higher upstream pressure to lower constant downstream pressure regardless of fluctuating demand, and opens fully upon line pressure drop. It is a Normally Closed valve, which opens in response to a remote pressure command and shuts in the absence of that command.

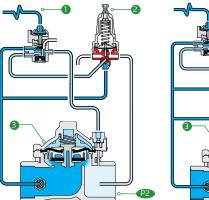
[1] BERMAD Model IR-220-54-X opens upon pressure rise command, and establishes reduced pressure zone protecting laterals and distribution line.

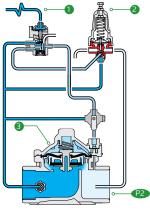
[2] BERMAD Combination Air Valve Model IR-C10

[3] BERMAD Automatic AIR Valve model IR-A10

All images in this catalog are for illustration only

Features & Benefits


- Line Pressure Driven, Hydraulically Controlled
- Hydraulic Pressure Control, Normally Closed
- Closes upon control failure
- Protects downstream systems
 - Amplifies and relays weak remote commandOpens fully upon line pressure drop
- Plastic Globe Hydro-Efficient Valve
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
- Highly durable, chemical and cavitation resistant
- Unitized Flexible Diaphragm and Guided Plug
- Excellent low flow regulation performancePrevents diaphragm erosion and distortion
- Fully Supported & Balanced Diaphragm
- Requires low actuation pressure
- User-Friendly Design
 Simple in-line inspection and service


Typical Applications

- Computerized Irrigation Systems
- Drip Systems
- Pressure Reducing Stations
- Systems Subject to Varying Supply Pressure
- Energy Saving Irrigation Systems

Operation:

The 3-Way Hydraulic Relay Valve (3W-HRV) **1** hydraulically connects the Pressure Reducing Pilot (PRP) **2** to the Valve Control Chamber **3**. The PRP commands the Valve to throttle closed should Downstream Pressure **22** rise above pilot setting and to open fully when it drops below pilot setting. The 3W-HRV switches upon pressure drop command, directing line pressure into the control chamber, and thereby causing the main Valve to shut. The 3W-HRV also features local manual closing.

Irrigation

Technical Data

Sizes: 1½-2"; DN40-50 Patterns: Globe: 1½ & 2"; DN40 & 50 Angle: 1½ & 2"; DN40 & 50 End Connections: Female Threads BSP; NPT Pressure Rating: 10 bar; 145 psi

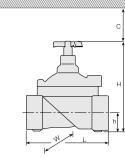
Operating Pressure Range: 0.5-10 bar; 7-145 psi Setting Range: 1-7 bar; 15-100 psi Setting ranges vary according to specific pilot spring. Please consult factory

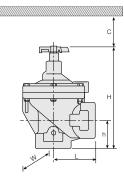
Standard Materials: Body & Cover: Black PA6+33%GF Diaphragm: NBR Seals: NBR

Spring: Stainless Steel Cover Bolts: Stainless Steel

Control Accessories:

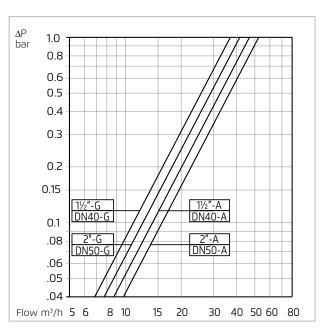
Tubing and Fittings: Plastic


Range of Springs:


Spring	Spring color	Setting Range	
J	Green	0.2-1.7 bar	
К	Gray	0.5-3.0 bar	
Ν	Colorless	0.8-6.5 bar	

Technical Specifications

Dimensions and Weights


Sizes Inch ; DN	11⁄2″ ; 40		2" ; 50	
Pattern	Globe	Angle	Globe	Angle
L (mm)	160	80	170	85
H (mm)	180	190	190	210
W (mm)	125	125	125	125
h (mm)	35	40	38	60
Weight (kg)	1	0.95	1.1	0.91

C = Half of H

Flow Chart

Flow Properties

Sizes

ΚV

Inch

DN

 $\Delta P = \left(\frac{Q}{Kv:Cv}\right)^{2}$

Kv = Valve flow coefficient

Cv = Valve flow coefficient (flow in gpm at Diff. Press. 1 psi)

Where:

G

1½″

40

37

Valve flow coefficient, Kv or Cv

Α

1½″

40

47

G

2'

50

41

Α

2″

50

52

 $Q = Flow rate (m^3/h; gpm)$

Cv = 1.155 Kv

P = Differential pressure (bar; psi)

www.bermad.com