

PRESSURE REDUCING VALVE

NORMALLY CLOSED WITH HYDRAULIC CONTROL

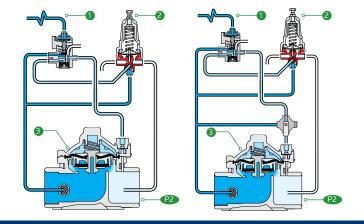
Model IR-220-54-3W-X

The BERMAD Normally Closed, Pressure Reducing Valve with Hydraulic Control, is a hydraulically operated, diaphragm actuated control valve that reduces higher upstream pressure to lower constant downstream pressure regardless of fluctuating demand, and opens fully upon line pressure drop. It is a Normally Closed valve, which opens in response to a remote pressure command and shuts in the absence of that command.

- [1] BERMAD Model IR-220-54-X opens upon pressure rise command, and establishes reduced pressure zone protecting laterals and distribution line.
- [2] BERMAD Combination Air Valve Model IR-C10
- [3] BERMAD Automatic AIR Valve model IR-A10

Features & Benefits

- Line Pressure Driven, Hydraulically Controlled
 - Hydraulic Pressure Control, Normally Closed
 - Closes upon control failure
- Protects downstream systems
 - Amplifies and relays weak remote command
 - Opens fully upon line pressure drop
- Plastic Globe Hydro-Efficient Valve
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
 - Highly durable, chemical and cavitation resistant
- Unitized Flexible Diaphragm and Guided Plug
 - Excellent low flow regulation performance
 - Prevents diaphragm erosion and distortion
- Fully Supported & Balanced Diaphragm
- Requires low actuation pressure
- User-Friendly Design
 - Simple in-line inspection and service


Typical Applications

- Computerized Irrigation Systems
- Drip Systems
- Pressure Reducing Stations
- Systems Subject to Varying Supply Pressure
- Energy Saving Irrigation Systems

Operation:

The 3-Way Hydraulic Relay Valve (3W-HRV) ① hydraulically connects the Pressure Reducing Pilot (PRP) ② to the Valve Control Chamber ③. The PRP commands the Valve to throttle closed should Downstream Pressure ④ rise above pilot setting and to open fully when it drops below pilot setting. The 3W-HRV switches upon pressure drop command, directing line pressure into the control chamber, and thereby causing the main Valve to shut. The 3W-HRV also features local manual closing.

All images in this catalog are for illustration only

Technical Data

Pressure Rating: 10 bar; 145 psi

Operating Pressure Range: 0.5-10 bar; 7-145 psi

Setting Range: 1-7 bar; 15-100 psi Setting ranges vary according to specific pilot Materials:

Body, Cover and Plug: Polyamid 6 & 30% GF Diaphragm: NBR Seals: NBR

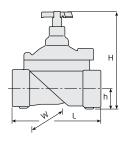
Spring: Stainless Steel **Cover Bolts:** Stainless Steel

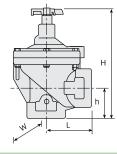
Control Accessories:

Tubing and Fittings:

Plastic

Pilot Spring Range:


Spring	Spring Setting color Range	
J	Green	0.2-1.7 bar
K	Gray	0.5-3.0 bar
N	Colorless	0.8-6.5 bar

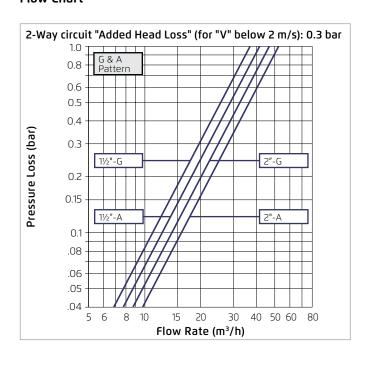

Technical Specifications

spring. Please consult factory

Dimensions & Weights

For more details of <u>BERMAD</u> 200 series Please see our full engineering page.

Sizes Inch ; DN	1½"	; 40	2" ; 50		
Pattern	Globe	Angle	Globe	Angle	
L (mm)	160	80	170	85	
H (mm)	180	190	190	210	
W (mm)	125	125	125	125	
h (mm)	35	40	38	60	
Weight (kg)	1	0.95	1.1	0.91	


Flow Properties

Sizes	Inch DN	1½" 40	1½" 40	2" 50	2" 50
Pattern		G	А	G	А
KV		37	41	47	52

Valve Flow Coefficient

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

Flow Chart

www.bermad.com